Copeland reciprocating condensing unit

Reliable reciprocating compressor technology. Ideal for QSR small cold room & food service applications.

Sustainable and Innovative HVACR solutions for a greener future.

To achieve the goals of the Paris Agreement, countries and companies worldwide must have their greenhouse gas emissions by 2030 and reach net zero emissions by 2050. Fulfilling these decarbonization objectives requires innovative solutions, collaboration and commitment from all stakeholders. Sustainable infrastructure characterized by their superior energy efficiency and use of environmentally friendly refrigerants contribute to decarbonization efforts by maximizing efficiency the air conditioning and heating requirements of green buildings.

Copeland solution packages enables best-in-class sustainable solutions to solve the toughest heating and air conditioning challenges in an evolving HVAC industry. We help customers determine what upcoming changes mean for their business while helping them prepare for tomorrow's challenges today.

Commercial Refrigeration

Copeland compressors and condensing unit help ensure food quality and safety is maintained, helping minimize wastage while maximizing profits.

Industrial Refrigeration

With over 150 years of refrigeration experience, Vilter compressors and units provide superior reliability with lowest life-cycle costs and are optimized for process cooling applications.

Cargo Tracking & Monitoring

Data loggers and trackers help monitor temperature and humidity of perishable goods in transit. The increased visibility help ensure shipments arrive safety and fresh at their destination.

Food Temperature Mgmt. & Monitoring

Cooper-Atkins monitoring solutions for food service industry help ensure proper food temperature are maintained and safety standards are kept.

TABLE OF CONTENTS

	Page
Safety Information	4
Nomenclature & Scope of Supply	7
Features & Benefits	8
Technical Data	12
Installation	14
Start-up and Operations	17
Refrigerant Charging	19
Condensing Unit Maintenance	20
Application Tips	21
Electrical Tips	21
System Troubleshooting Guide	22
External Chassis Dimension	23
Piping and Instrument Diagram (P&ID)	25
Wiring Diagrams	30
Pressure - Temperature Chart	34

Disclaimer

Thank you for purchasing the Copeland Recip Condensing Unit. We hope that this product meets your refrigeration needs. Please read through this operation manual to familiarize yourself with the installation, commissioning and operation of this product. Please do read the following information in this page before proceeding with the rest of the manual.

The Recip Condensing Unit should only be installed by suitably qualified and experienced refrigeration technicians. No responsibility can be accepted for damage caused by inexperienced or inadequately trained site technicians or improper system design. All instructions and procedures described in this manual are based on good refrigeration trade practices as applicable to this product. The installation contractor may prefer to use variations to these recommendations. However, the methods described in this manual represent the minimum requirements to avoid any subsequent warranty claims for this equipment and its components. These instructions do not cover the fundamentals of good electrical or refrigeration practice and are therefore intended for use only by qualified and/or experienced personnel or technicians.

Please consult your local sales office, quoting unit model and serial number as shown on the nameplate. In case of ambiguity, the wiring diagram supplied with each unit takes precedence over the diagram in this manual.

1. Safety Information

- 1.1 Installation and commissioning work on Recip Condensing Unit shall be carried out only by qualified, accredited refrigeration personnel who have been trained sand instructed.
- 1.2 Recip Condensing Unit is manufactured according to the latest safety standards. Emphasis has been placed on the user's safety. For relevant standards please refer to the manufacturer's declaration, available on request. These instructions should be retained throughout the lifetime of the of the unit. You are strongly advised to follow these safety instructions.
- 1.3 Icon Explanation

	WARNING This icon indicates instructions to avoid personal injury and material damage.		CAUTION This icon indicates instructions to avoid property damage and possible personal injury.
4	HIGH VOLTAGE This icon indicates operations with a danger of electric shock.		IMPORTANT This icon indicates instructions to avoid malfunctions of the compressor.
	DANGER OF BURNING OR FROSTBITE This icon indicates operations with a danger of burning or frostbite.	NOTE	This word indicates a recommendation for easier operation.
	EXPLOSION HAZARD This icon indicates operations with a danger of explosion		

- 1.4 Safety Statement
 - a. Only qualified and authorized refrigeration personnel are permitted to install, commission and maintain this equipment
 - b. Electrical connections must be made by qualified electrical personnel.
 - c. All valid standards for connecting electrical and refrigeration equipment must be observed.
 - d. The national legislation and regulations regarding personnel protection must be observed.

Use personal safety equipment. Safety goggles, gloves, protective clothing, safety boots and hard hats should be worn where necessary.

2. General Instructions

WARNING

System Breakdown! Personal Injuries! Never install a system in the field and leave it unattended when it has no charge, a holding charge or with service valve closed without electrically locking out the system.

Only approved refrigerants and refrigeration oils must be used.

High shell temperature! Burning!

Do not touch the compressor until it has cooled down. Ensure that other material in the area, do not touch it. Lock and mark accessible sections

CAUTION

WARNING

Overheating! Bearing damage!

Do not operate compressors without refrigerant charge without being connected to the system

CAUTION

Compressor contain oil & refrigerant under pressure.

Release pressure from both high & low side of compressor before servicing

q	Îh	
Ľ		

CAUTION

Tube brazing & compressor operation can product hot surfaces. To avoid burns, allow surfaces to cool

2.1 Receiving your unit

All units are shipped with a holding charge of dry nitrogen inside at a low but positive pressure. It is very important to check that this holding pressure exists at the time you receive each unit from us or our authorized representatives. Please inform us or our authorized representative if the holding charge is non-existent. Failure to do so could void the claim for other related system faults at a later period

Transit damage is essentially an insurance claim and is not covered under manufacturing defect. It is also advisable to inspect the unit for obvious physical damage and inform us or our authorized representative in case any is discovered.

2.2 Condensing Unit (CDU) Handling

Transport, Handling and Storage:

- During transportation & storage, always keep the unit in vertical/upright position.
- Always move the CDU with boxes or pallet tightened properly with strapping tape. Because it may cause transit damage.
- Do not stack single boxes on top of each other without pallet in any case. •
- Always move the units in fully closed container/vehicle to avoid from rain. .
- Handle the unit with care. The packaging allows the use of a forklift or pallet jack for handling. Use appropriate and safe handling equipment.
- It is recommended not to open the packaging before the unit is at final place for installation.

Copeland is a new standalone company serving the global HVACR market, enhancing opportunities to support our customers as a focused company.

Condensing Unit Nomenclature

Table A: Electrical

Code	Voltage rating
TFM	380V 3 ф 50Нz
PFZ	220V 1 φ 50Hz
TF5	220V 3ф 60Hz
TF7	380V 3 ф 60Нz
PFV	220V 1 φ 60Hz

Table B: Housing

Code	Housing type
А	Flat metal base
Q	Metal housing without door
R	Metal housing with door

Table C: BOM table

		Medium Temp Units BOM				Low Temp Unit			
Number	Parts	621	633	622	632	635	636	637	638
		TFM	PFZ	TFM	PFZ	PFZ	TFM	TFM	TFM
1	LP	Adj	Adj	Adj	Adj	Adj	Adj	Adj	Adj
2	Compressor	3 Phase Rotalock	1 Phase Rotalock	3 Phase Stub Tube	1 Phase Stub Tube	1 Phase Stub Tube	3 Phase Stub Tube	3 Phase Stub Tube	3 Phase Rotalock
3	HP	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed	Adj
4	Oil Separator	\checkmark	\checkmark	х	х	х	х	х	\checkmark
5	Receiver (SANS Approved)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
6	Filter Drier	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
7	Sight Glass	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
8	Service Valves	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
9	Terminal Rail	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
10	Crank Case Heater	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
11	Circuit Breaker	√	\checkmark	√	\checkmark	\checkmark	√	√	\checkmark
12	Contactor	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Copeland EAC Reciprocating Condensing Unit

Quality condensing units

EAC Condensing Unit available in a compact & durable chassis with both medium temperature & low temperature applications

Ready for installation

Factory installed electrical box with contactor, terminal strip and circuit breaker; just plug in it!

Flexible choice of compressor

CS*K7 for medium temperature application and KCM*LAL for low temp application

Ease of service

Powder coated chassis for weather protection with service door for easy access

Copeland protection

Factory fitted flow controls Filter Dryer, Sight glass, Crankcase Heater, Oil Separator and Receiver.

Medium temperature reciprocating condensing unit

HP	SKU	Compressor	Capacity (kW) ¹	Chassis ²
1.5	EAC-SE015AE-PFZQ632	CS10K7ME-PFZ	07	
1.5	EAC-SE015AE-TFMQ622	CS10K7ME-TFM	2.7	A 1
	EAC-SE020AE-PFZQ632	CS13K7ME-PFZ	07	AI
2	EAC-SE020AE-TFMQ622	CS13K7ME-TFM	3.7	
25	EAC-SE025AE-PFZR633	CS17K7ME-PFZ	10	
2.5	EAC-SE025AE-TFMR621	CS17K7ME-TFM	4.0	
2	EAC-SE030AE-PFZR633	CS20K7ME-PFZ	EA	В
3	EAC-SE030AE-TFMR621	CS20K7ME-TFM	5.4	
4	EAC-SE040AE-TFMR621	CS27K7ME-TFM	7.0	
5	EAC-SE050AE-TFMR621	CS33K7ME-TFM	8.9	С

1. Capacity condition: Evaporating temp.-10C, Ambient temp 32C, R404A

See drawing pages 12-13
Rotalock compressor

Low temperature reciprocating condensing unit

HP	SKU	Compressor	Capacity (kW) ¹	Chassis ²
0	EAC-ML020AE-PFZQ635	KCM475LAL-C310H	2	4.2
2	EAC-ML020AE-TFMQ636	KCM475LAL-E511H	2	AZ
2.5	EAC-ML025AE-TFMR637	KCM512LAL-E511H	3.5	D
3	EAC-ML030AE-TFMR637	KCM515LAL-E511H	4	В
3.5	EAC-ML035AE-TFMR638	KCM517LAL-E513H	4.5	
4	EAC-ML040AE-TFMR638	KCM520LAL-E513H	5	

1. Capacity condition: Evaporating temp.-23C, Ambient temp 32C, R404A

2. See drawing pages 12-13

3. Stub tube compressor

EAC-SM technical data

R404A 50Hz

PFZ - 220V 1φ 50 Hz

		Туре	Medium Temperature					
		Electricals	220~230V/50Hz/1Ph					
	Model	Туре	PFZ					
		Horsepower	1.5 HP	2 HP	2.5 HP	3 HP		
		Model	EAC-SE015AE- PFZQ632	EAC-SE020AE- PFZQ632	EAC-SE025AE- PFZR633	EAC-SE030AE- PFZR633		
	Model		CS10K7ME-PFZ-13A	CS13K7ME-PFZ-13A	CS17K7ME-PFZ-13A	CS20K7ME-PFZ-13A		
	Detect Load Ampore	R404A	7.27	9.65	11.28	12.7		
	Rated Load Ampere	R22	6.55	8.69	10.17	11.4		
Com- pressor	Looked Deter Ampore	R404A	54	72	85	104		
	Locked Rotor Ampere	R22	54	72	85	104		
	Oil Type	-	POE	POE	POE	POE		
	Oil Recharge Volume	Litre	1.27	1.27	1.27	1.27		
	No. of Fans	PCS	1	1	1	1		
	Diameter	mm	450	450	500	500		
Fan Motor	Speed	RPM	890	890	920	920		
	Power per Motor	Watts	65	65	160	160		
	Air Flow	Ft ³ / Min.	1560	1560	2637	3082		
Othor	Crank Case Heater	Watts	40/49	40/49	40/49	40/49		
Other	Receiver Volume	Litre	1.4	1.4	4.3	4.3		
	Gas Conenction Size	inch	5/8"	5/8"	5/8"	5/8"		
Unit	Liquid Connection Size	inch	3/8"	3/8"	3/8"	3/8"		
Data	Dimention in Inch	LxWxH	34.2 x 15.1 x 24.5	34.2 x 15.1 x 24.5	41.1x17.3x31.7	41.1x17.3x31.7		
	Weight	Kg	77	79	85	85		

EAC-SM technical data

TFM - 380V 3φ 50Hz

		Туре		Medium Temperature				
		Electricals		380~420V	/50Hz/3Ph			
	Model	Туре	TFM					
		Horsepower	1.5 HP	2 HP	2.5 HP	3 HP		
		Model	EAC-SE015AE- TFMQ622	EAC-SE020AE- TFMQ622	EAC-SE025AE- TFMR621	EAC-SE030AE- TFMR621		
	Model		CS10K7ME-TFM-13A	CS13K7ME-TFM-13A	CS17K7ME-TFM-13A	CS20K7ME-TFM-13A		
	Datad Load Ampore	R404A	2.64	3.87	4.97	4.97		
	Rated Load Ampele	R22	2.38	3.49	4.48	4.48		
Com- pressor	Looked Deter Ampere	R404A	20	28	41	45		
process	Locked Rotor Ampere	R22	20	28	41	45		
	Oil Type	-	POE	POE	POE	POE		
	Oil Recharge Volume	Litre	1.27	1.27	1.27	1.27		
	No. of Fans	PCS	1	1	1	1		
	Diameter	mm	500	500	500	500		
Fan Motor	Speed	RPM	920	920	920	920		
	Power per Motor	Watts	160	160	160	160		
	Air Flow	Ft ³ / Min.	3000	3000	2637	3082		
Other	Crank Case Heater	Watts	40/49	40/49	40/49	40/49		
Other	Receiver Volume	Litre	4.6	4.6	4.6	4.6		
	Gas Conenction Size	inch	5/8"	5/8"	5/8"	5/8"		
Unit	Liquid Connection Size	inch	3/8"	3/8"	3/8"	3/8"		
Data	Dimention in Inch	LxWxH	41.1 x 17.3x31.7	41.1 x 17.3x31.7	41.1x17.3x31.7	41.1x17.3x31.7		
	Weight	Kg	77	79	85	85		

		Туре	Medium Temperature		
		Electricals	380~420V	/50Hz/3Ph	
	Model	Туре	TFM		
			4 HP	5 HP	
		Model	EAC-SE040AE-TFMR621	EAC-SE050AE-TFMR621	
	Model		CS27K7ME-TFM-13A	CS33K7ME-TFM-13A	
	Pated Load Ampore	R404A	6.58	7.46	
	Rated Load Ampere	R22	5.93	6.73	
Compressor	Looked Deter Ampere	R404A	61	55	
		R22	61	55	
	Oil Type	-	POE	POE	
	Oil Recharge Volume	Litre	1.27	1.27	
	No. of Fans	PCS	1	2	
	Diameter	mm	500	500	
Fan Motor	Speed	RPM	920	1100	
	Power per Motor	Watts	160	106	
	Air Flow	Ft ³ / Min.	3000	4000	
Other	Crank Case Heater	Watts	70	70	
Other	Receiver Volume	Litre	4.6	5.8	
	Gas Conenction Size	inch	7/8"	7/8"	
	Liquid Connection Size	inch	1/2"	1/2"	
	Dimention in Inch	LxWxH	41.1 x 17.3x31.7	42.2 x 17.4 x 46.1	
	Weight	Kg	85	140	

EAC-ML technical data

PFZ - 220V 1φ 50 Hz

		Туре	Low Temperature	
		Electricals	220~230V/50Hz/1Ph	
Мо	odel	Туре	PFZ	
		Horsepower	2 HP	
		Model	EAC-ML020AE-PFZQ635	
	Model		KCM475LAL-C311H	
	Rated Load Ampere	R404A	3.5	
Compressor	Locked Rotor Ampere	R404A	28	
	Oil Type	-	POE	
	Oil Recharge Volume	Litre	1.27	
	No. of Fans	PCS	1	
	Diameter	mm	450	
Fan Motor	Speed	RPM	900	
	Power per Motor	Watts	54	
	Air Flow	Ft3 / Min.	1767	
Other	Crank Case Heater	Watts	58 @ 220~240V	
Other	Receiver Volume	Litre	1.4	
	Gas Conenction Size	inch	1/2"	
Lipit Data	Liquid Connection Size	inch	3/8"	
Unit Data	Dimention in Inch	LxWxH	33.3 x 13.7 x 23.7	
	Weight	Kg	100	

EAC-ML technical data

TFM - 380V 3φ 50Hz

Model		Туре	Low Temperature								
		Electricals	380~420V/50Hz/3Ph								
		Туре	TFM								
		Horsepower	2 HP	2.5 HP	3 HP	3.5 HP	4 HP				
		Model	EAC-ML020AE- TFMQ636	EAC-ML025AE- TFMR637	EAC-ML030AE- TFMR638	EAC-ML035AE- TFMR638	EAC-ML040AE- TFMR638				
Model			KCM- 475LAL-E511H	KCM- 512LAL-E511H	KCM- 515LAL-E512H	KCM- 517LAL-E513H	KCM- 520LAL-E513H				
	Rated Load Ampere	R404A	9.3	5.8	6.3	10.1	12.6				
Com- pressor	Locked Rotor Ampere	R404A	7.3	45	45	61	65				
	Oil Type	-	POE	POE	POE	POE	POE				
	Oil Recharge Volume	Litre	1.27	1.27	1.27	1.3	1.3				
Fan Motor	No. of Fans	PCS	1	1	1	2	2				
	Diameter	mm	450	450	450	450	450				
	Speed	RPM	900	920	920	1100	1100				
	Power per Motor	Watts	54	160	160	106	106				
	Air Flow	Ft3 / Min.	1767	2637	2637	4000	4000				
Other	Crank Case Heater	Watts	35 @ 240V	40 @ 240V	58 @ 220~240V	40/@480V	40/@480V				
	Receiver Volume	Litre	1.4	4.6	4.6	5.8	5.8				
Unit Data	Gas Conenction Size	inch	1/2"	5/8"	5/8"	7/8"	7/8"				
	Liquid Connection Size	inch	3/8"	3/8"	3/8"	1/2"	1/2"				
	Dimention in Inch	LxWxH	33.3 x 13.7 x 23.7	41.1x17.3x31.7	41.1x17.3x31.7	42.2 x 17.4 x 46.1	42.2 x 17.4 x 46.1				
	Weight	Kg	100	140	140	170	170				

Installation

The condensing unit should be located in such a place to prevent any dirt, plastic bag, leaves or papers from covering the condenser and its fins. The unit must be installed without restricting the airflow. A clogged condenser will increase the condensing temperature, thus reduce the cooling capacity, and lead to a high-pressure switch tripping. Clean the condenser fins on a regular basis.

Before installation

- Check all the LOTO tags, Working Space, operative should have correct tools etc.
- Ensure the units received are the correct models for the intended application.
- Ensure the refrigerant, voltage and gauges are all suitable for the proposed application & unit.
- Check there is no damage to the units.
- Check that the proposed equipment locations are suitable and provide adequate support for the weight of the units.

During installation and subsequent maintenance

- Installation and maintenance are to be performed only by qualified personnel who are familiar with local codes and regulations and experienced with these types of equipment.
- If lifting equipment is required, ensure that it is suitable for purpose, certified and that the operative are qualified to use it.
- Ensure safe working methods are identified, and operative have suitable PPE's.
- Ensure the working area has adequate ventilation during brazing procedures.
- Disconnect and shut off power before installation or service of the equipment
- Refrigerant release into the atmosphere is illegal. Proper evacuation, recovery, handling and leak testing procedures must always be observed.
- Units must be earthed, and no maintenance work should be attempted prior to disconnecting the electrical supply.
- The electrical covers and fan guards must always remain fitted.

Note: All Compressors are delivered with sufficient oil for normal operation. The optimum oil level or oil return should be checked by operating the compressor until the system is stable. It is not recommended to top up Oil unnecessary.

Qualified refrigerants	R404A, R407C, R134a, R22, R507, R407A
Copeland brand products standard oils	Emkarate RL 32 3MAF
Servicing oils	Emkarate RL 32 3MAF Mobil EAL Arctic 22 CC

If required additional charge of oil for top-up or oil change during maintenance or in case of leakage. kindly use our qualified oil as per below table recommended for these Condensing units. Oil Level should not exceed 1/3rd of the Compressor sight glass.

Location and fixing

- The unit should always be installed in a location that ensures clean air flow. Both service access and airflow have been considered in making these recommendations.
- Where multiple units are to be installed in the same location, the contractor needs to consider each individual case carefully.
- Ideally, the unit should be mounted on a solid concrete slab with anti-vibration pads between unit feet and concrete.
- Ensure that there is no obstruction to air flow into or out of the unit. Remove obstacles which block air intake or discharge.
- The location must be well ventilated, so the air can pass properly through condenser by maintaining the proper condensation in the system.

Installation clearance

Mounting Location - Single fan

Mounting Location - Dual fan

Refrigeration piping installation

All interconnecting pipes should be of refrigeration grade, clean, dehydrated and must remain capped at both ends until installation. Even during installation, if the system is left for any reasonable period (say two hours), pipes should be re-capped to prevent moisture and contaminants from entering the system.

Do not assume that the service connection sizes on the unit (at the service valves) are the correct size to run your interconnecting refrigeration pipes. The service valve sizes have been selected for convenience of installation and in some cases (larger units) these may be considered too small. However, for the very short pipe run within our units, these service connection sizes are adequate. All interconnecting pipes should be sized to satisfy the duty required.

The pipe should be sized to ensure optimum performance and good oil return. The sizing must also take into account the full capacity range through which this particular unit will need to operate.

Pipe runs should be kept as short as possible, using the minimum number of directional changes. Use large radius bends and avoid trapping of oil and refrigerant. This is particularly important for the suction line. The suction line should ideally slope gently towards the unit. Recommendation slope is 1/200~1/250. P traps, double risers and reduced pipe diameters may be required for suction lines where long vertical risers cannot be avoided. All pipes should be adequately supported to prevent sagging which can create oil traps.

Tube size	Max. distance between 2 clamp support
12.7mm (1/2 inch)	1.20 m
16.0mm (5/8 inch)	1.50 m
22.0mm (7/8 inch)	1.85 m
28.5mm (1 1/8 inch)	2.20 m

The recommended pipe clamp support distance is shown in the table.

Brazing Recommendations

Maintain a flow of oxygen-free nitrogen through the system at a very low-pressure during brazing. Nitrogen displaces the air and prevents the formation of copper oxides in the system. If copper oxidization is allowed to form, the copper oxide material can later be swept through the system and block screens such as those protecting capillary tubes, thermal expansion valves, and accumulator oil return holes. This minimizes any entry of contaminants and moisture.

- Remove the liquid line connection cap.
- Then remove the suction connection cap.
- Open both valves midway. Care should be taken to avoid the holding charge from releasing too quickly.
- Be sure tube fitting inner diameter and tube outer diameter are clean prior to assembly.
- Since both tubes are extended from the condensing unit housing, we recommend insulating the housing by using a wet cloth on the copper tubing.
- Recommended brazing materials: a copper / phosphorous or copper/phosphorous / silver alloy rod should be used for joining copper to copper whereas to join dissimilar or ferric metals, use a silver alloy rod, either flux coated or with a separate.
- Use a double tip torch

Start up and operation

Leak check

The unit has been leak tested and QA approved from the factory. However, due to handling and shipping the entire refrigeration system must be tested for leaks. Failure to carry out leak test can result to undesirable system performance.

Step-by-step:

- 1. Open both the liquid and suction service valves.
- 2. Ensure the solenoid valve is energized and open, if available.
- 3. Pressurize the system to 300 psig/21 Bar maximum with dry nitrogen.
- 4. Allow dry nitrogen to reach all parts of the system.
- 5. Check all joints and components using soap/bubble test or with an electronic leak detector.
- 6. Wait for atleast an hour to ensure the system is holding the pressure and is found to be leaked-proof, if the system loses any pressure over the course of 30 minutes to 1 hour, then it is a sure indication that the system is leaking.

If leak has been detected somewhere on the system, relief the pressure and repair the leak. For an effective installation, the system must be leak tight.

System evacuation

Evacuating a refrigeration system serves two primary objectives: (1) remove non-condensable and (2) remove water vapor or dehydrate the system.

Air and moisture are detrimental to system operation. The successful long-term operation of the system depends on thoroughly conditioning them before charging with refrigerant and the losses associated with improper evacuation erodes system efficiency as well as costly for the installers.

A 2-stage vacuum pump along with a micron gauge is recommended in performing evacuation. The quality of vacuum is not determined by time – a micron gauge must be used since it is the only device that accurately reads the vacuum pressure during the evacuation process.

REMINDER: Do not use the system compressor as a vacuum pump and do not operate the compressor while the system is in vacuum. Emerson Climate Technologies recommends Triple Evacuation Process (best practice) to be implemented on all our installations.

Note: that the following procedure is based upon achieving an actual system vacuum standard and it is **NOT TIME DEPENDENT**!

Step-by-step:

- 1. Open both the liquid and suction service valves.
- 2. Ensure the solenoid valve is energized and open, if available.
- 3. Connect vacuum pump to the liquid and suction service valves.
- 4. Start the vacuum pump and then open the service valves.
- 5. Perform triple evacuation process as follows:
 - a. Vacuum until a pressure of 1,500 microns is reached at which time the vacuum should be broken with the refrigerant to be used in the system through a drier until the system pressure rises to 2 psig
 - b. Repeat this process again
 - c. Evacuate the entire system to 500 microns (minimum recommended). Evacuate the system below 500 microns may enhance the reliability of system.

Refrigerant charging

After ensuring the system is vacuumed properly and all valves are opened, only then start the refrigerant charging process. Below mentioned procedure is applicable for both Scroll & Reciprocating Compressors.

Step-by-step:

- 1. Ensure that there is no power supply to the CDU unit. The Liquid Line solenoid needs to be kept open for the charging process, if available and this may require a temporary power feed to it.
- 2. Connect the refrigerant cylinder to main service hose and purge line at the manifold end.
- 3. Ensure correct orientation of the refrigerant cylinder.
- 4. Follow cylinder labeling/instructions so that liquid refrigerant can be charged into the high side of the system using high-pressure side of the manifold.
- 5. The refrigerant cylinder should be weighed at this point to be able to record the final refrigerant charge.
- 6. Now open the liquid service valve (off the back seat). With a good vacuum in the system, system will in-take 60-70 % of the refrigerant required in the system without running the compressor.
- 7. The compressor can then be started, and the unit continued to be charged (with liquid refrigerant through the suction service valve).
- 8. The quantity of charge should always be measured. See note.
- 9. The system needs to be operated down to its design evaporating temperature before you can be sure the charge is correct. It is at this point that the normal refrigeration operational checks can be carried out such as checking the liquid line sight glass for violent bubbles and the operating pressures.

In the event that the system is still short of refrigerant, repeat from step #7 onwards.

Refrigerant charging is said to be complete when the operating temperature of the system has been stable for some time and the liquid line sight glass is clear ensuring Suction & Discharge pressure, Superheat and subcooling.

Note: Do not Charge the refrigerant by measuring the current drawn by compressor. Never run the compressor before charging some enough amount of refrigerant into the system

CDU maintenance

Condenser fins

- Condenser fins become dirty over time as ambient air is induced to the condenser. Dirty coil surfaces result in high condensing temperatures and poor unit performance. Regular cleaning is recommended with frequency depending on the installation and the surrounding environment. As a general guide, it is advisable to do this at least once every two months.
- Fins should be cleaned with proper cleaning agent. Before washing, a light brush downward (in the direction of the fins) should be brushed to remove heavy deposits.

Compressor

- No corrosion is deposited at compressor body over the period of time.
- Ensure compressor superheat and all system parameters as per designed conditions.

Condenser fan(s) and motor(s)

• An annual inspection of these items is recommended. Fastenings may loosen, bearings may wear, and fans may require cleaning of solid deposits which can cause imbalance.

Regular checks

On a regular basis, check the below check point for their proper operation & to keep the system healthy. Do not operate any mechanical/Electrical maintenance work before switching off the Electrical Supply.

Compressor

- · Check the oil level if sight glass is available.
- · Current drawn by compressor should be with-in the specified range as mentioned on nameplate.

Routine leak test & visual inspection

- All joints should be checked for leaks during site visits. All joints should be leak tested once-a-year.
- Moisture indicator check the moisture indicator dial for level of moisture content in system.
- · Check HP-LP settings at in place as per recommended values.
- · Check all sensors are in place.

Electrical connections

- Check if any loose electrical connection.
- Ensure no chattering in Electrical accessories, connections & safety devices.
- Check that the ampere drawn by CDU or compressor doesn't exceed the value specified on the nameplate.

WARNING: TURN OFF OR DISCONNECT THE ELECTRICAL POWER SOURCE BEFORE CLEANING THE CONDENSER COIL OR DOING MAINTENANCE.

Application tips for compressors (reciprocating)

- Please do Vacuum break with pure liquid refrigerant charge on high side and top-up by liquid bleed in suction.
- Always ensure the LP/HP Setting before starting the compressor.
- · Don't use refrigeration compressor for self-evacuation.
- Never use the compressor to suck oil into the system.
- Do not test compressor by closing suction valve or in open air.
- Do not use compressor to pull vacuum from the system.
- After vacuuming, never run the compressor before charged with refrigerant.
- Never use the compressor to suck the oil in to/from the system.
- Do not bypass LP & HP controls.
- Vacuum break with pure liquid refrigerant charge on high side and top-up by liquid bleed in suction.
- To avoid the refrigerant flood back during off- Cycle, kindly use Solenoid valve in liquid line.
- Don't allow short- cycling of compressor.
- If compressor is tripping on safety device, do not assume that compressor is faulty.

Electrical tips

Kindly verify before any Electrical installation if the voltage, frequency, and phase of supply satisfy those required of the unit. Ensure that Operative is following all safety guideline & procedure as mentioned above while performing Electrical Installation.

- All wiring should be carefully checked & refer wiring diagram (attached inside of the electrical cabinet) to complete unit control circuit.
- Do not handle high-voltage electrical wiring unless properly trained.
- Check if the Voltage deviation of 10 % is within the specified range mentioned on unit name plate.
- Do not by -pass any electrical safety equipment like MCCB, SPP, Contactor, Overload Relay, timer & other safety devices.
- Use genuine specified electrical accessories for CDU/Compressor model recommended by Company.
- Check the electrical connections if they are properly attached, secured and properly tightened.
- Make sure all panels are secure and panel screws are properly tightened.
- · Check that the ampere draw doesn't exceed the amperage specified on the nameplate.
- · Check the phase unbalance if there is a three-phase connection.
- In single phase compressor. Check for neutral connection. It is better to connect Common (C) terminal to the neutral supply.
- Check for Earth/ground. Ensure each component is getting proper supply, No indication of Connection point burnt or chattering in Connection and is working as intended.
- Do not bypass the crankcase heater connection and its operation sequence (low ambient/During off cycle) If you do not fully understand how to install your product after reading the manufacturer's instructions, contact our local authorized dealer or technical team for help and do not attempt to install it yourself.

System troubleshooting guide

Symptom	Possible Cause	Correction			
	Power disconnected or loose connection	Check voltage at contactor in condensing unit			
	Blown fuse / breaker tripped	Replace fuses / reset breaker			
Lipit is not starting	Thermostat out of calibration - set too high	Reset			
of the starting	Contactor defective	Check & replace if open			
	High pressure Switch open (if provided)	Reset – see high pressure correction (high pressure control opens at 450 psig)			
	Run or start capacitor defective	Replace			
	Start relay defective	Replace			
Outdoor fan on; Compressor off	Loose wire & low voltage	Check for correct voltage at compressor – check and tighten all connections			
	Compressor stuck, grounded or open motor winding, open internal overload	Wait at least 2 hours for overload to reset; if still open, Check the compressor & replace.			
	Improperly sized unit	Recalculate load			
	Improper indoor airflow	Check as per desired conditions			
Too little cooling	Incorrect refrigerant charge	Charge per procedure in installation manual			
	Air, non-condensable or moisture in system	Recover refrigerant, evacuate and recharge, replace filter drier			
	Incorrect voltage	At compressor terminals, voltage must be +/- 10% of nameplate marking when unit is operating			
Compressor operates in short cycles	Defective overload protector	Replace - check for correct voltage			
	Refrigerant undercharge	Add refrigerant			
High head pressure;	Restriction in liquid line, expansion device or filter drier	Remove or replace defective component			
Low suction pressure	Lack of sufficient indoor airflow	Clean/check filters, registers, or evaporator coil that may cause a restriction.			
	Dirty outdoor coil	Clean coil			
High head pressure;	Refrigerant overcharge	Correct system charge			
Normal suction pressure	Outdoor fan not running	Repair or replace			
	Air or non-condensable gas in system	Recover refrigerant, evacuate and recharge			
Low head pressure;	Expansion device stuck in open position	Replace expansion device			
High suction pressure	Defective compressor valves	Replace compressor			
Low suction pressure;	Low indoor airflow	Increase speed of blower or reduce restriction – replace air filter			
Compressor cool;	Operating in very low ambient	Add low ambient kit			
	Moisture in system	Recover refrigerant – evacuate and recharge – replace filter drier			
	Excessive load	Recheck load calculation			
High suction pressure;	Defective compressor	Replace			
pressures	TXV hunting	Check TXV bulb clamp – check air distribution on coil – replace TXV			
	Air or non-condensable gas in system	Recover refrigerant, evacuate and recharge			
Suction & Discharge pressure	Compressor may loss pumping	Replace			
balanced	If cooling achieve, gauges may faulty	Gauges replace			
	Compressor may trip on IPRV	Check for high side restriction in the system			
	Run or start capacitor defective	Replace			
	Start relay defective	Replace			
	Loose wire	Check for correct voltage at compressor -			
Unit /Compressor Draw high Amps	Low voltage or voltage fluctuation	Check for correct voltage at compressor – check and tighten all connections			
	Moisture in the system	Replace filter drier			
	Liquid flood back in the compressor	Ensure proper load			
	Any contamination/ oil dilute	Check oil quality, replace with new oil & do the commissioning as per procedure			
	Leakage in the System	Repair			
	Compressor Stuck/JAM	Replace			
Compressor trip on IOLP	Compressor getting hot & Motor temperature Shooting – up	Maintain proper suction superheat & check oil level/ return to compressor			
	Reverse rotation of compressor	Check voltage & connection of comp. terminal			

External chassis dimension

Chassis A1

Chassis A2

External chassis dimension

Chassis B

Chassis C

EAC-SE015X/SE020X

EAC-SE025X/SE030X/SE035X/SE040X

EAC-SE045X/SE050X

EAC-ML020XAE-PFZ/ML020XAE-TFM

EAC-ML025X/ML030X/ML035X/ML040X

Applicable model:

EAC-SE015AE-PFZQ632 EAC-SE020AE-PFZQ632 EAC-SE030AEPFZR633 EAC-SE040AE-PFZR633 EAC-ML020AE-PFZQ635

Applicable Model:

EAC-SE015AE-TFMQ622 EAC-SE020AE-TFMQ622 EAC-ML020AE-TFMQ636

Applicable Model:

EAC-SE025AE-TFMR621 EAC-SE030AE-TFMR621 EAC-SE040AE-TFMR621 EAC-ML025AE-TFMR637 EAC-ML030AE-TFMR637

Applicable model:

EAC-SE050AE-TFMR621 EAC-ML035AE-TFMR638 EAC-ML040AE-TFMR638

Tempe	rature		F	Refrigerar	nt		Tempe	rature		F	Refrigerar	it	
٥F	°C	R-22	R-410a	R-407c	R-134a	R-404a	۰F	°C	R-22	R-410a	R-407c	R-134a	R-404a
-60	-51.1	11.9	0.9	16.0	21.6	1	27	-2.8	51.2	91.6	44.7	23.7	66.2
-55	-48.3	9.2	1.8	13.7	20.2		28	-2.2	52.4	93.5	45.9	24.5	67.7
-50	-45.6	6.1	4.3	11.1	18.6		29	-1.7	53.7	95.5	47.1	25.3	69.2
-45	-42.8	2.7	7.0	8.1	16.7		30	-1.1	54.9	97.5	48.4	26.1	70.7
-40	-40.0	0.6	10.1	4.8	14.7	4.9	31	-0.6	56.2	99.5	49.6	26.9	72.1
-35	-37.2	2.6	13.5	1.1	12.3	7.5	32	0.0	57.5	101.6	50.9	27.8	73.8
-30	-34.4	4.9	17.2	1.5	9.7	10.3	33	0.6	58.8	103.6	52.1	28.6	75.3
-25	-31.7	7.5	21.4	3.7	6.8	13.5	34	1.1	60.2	105.7	53.4	29.5	76.9
-20	-28.9	10.2	25.9	6.2	3.6	16.8	35	1.7	61.5	107.9	54.8	30.4	78.5
-18	-27.8	11.4	27.8	7.2	2.2	18.3	36	2.2	62.9	110.0	56.1	31.3	80.2
-16	-26.7	12.6	29.7	8.4	0.7	19.8	37	2.8	64.3	112.2	57.5	32.2	81.7
-14	-25.6	13.9	31.8	9.5	0.4	21.3	38	3.3	65.7	114.4	58.9	33.1	83.5
-12	-24.4	15.2	33.9	10.7	1.2	22.9	39	3.9	67.1	116.7	60.3	34.1	85.2
-10	-23.3	16.5	36.1	11.9	2.0	24.6	40	4.4	68.6	118.9	61.7	35.0	86.9
-8	-22.2	17.9	38.4	13.2	2.8	26.3	41	5.0	70.0	121.2	63.1	36.0	88.6
-6	-21.1	19.4	40.7	14.6	3.7	28.0	42	5.6	71.5	123.6	64.6	37.0	90.4
-4	-20.0	20.9	43.1	15.9	4.6	29.8	43	6.1	73.0	125.9	66.1	38.0	92.2
-2	-18.9	22.4	45.6	17.4	5.5	31.7	44	6.7	74.5	128.3	67.6	39.0	94.0
0	-17.8	24.0	48.2	18.9	6.5	33.7	45	7.2	76.1	130.7	69.1	40.0	95.8
1	-17.2	24.8	49.5	19.6	7.0	34.7	46	7.8	77.6	133.2	70.6	41.1	97.6
2	-16.7	25.7	50.9	20.4	7.5	35.7	47	8.3	79.2	135.6	72.2	42.2	99.5
3	-16.1	26.5	52.2	21.2	8.0	36.7	48	8.9	80.8	138.2	73.8	43.2	101.4
4	-15.6	27.4	53.6	22.0	8.6	37.7	49	9.4	82.4	140.7	75.4	44.3	103.3
5	-15.0	28.3	55.0	22.8	9.1	38.8	50	10.0	84.1	143.3	77.1	45.4	105.3
6	-14.4	29.1	56.4	23.7	9.7	39.8	55	12.8	92.6	156.6	106.0	51.2	115.3
7	-13.9	30.0	57.9	24.5	10.2	40.9	60	15.6	101.6	170.7	116.2	57.4	126.0
8	-13.3	31.0	59.3	25.4	10.8	42.0	65	18.3	111.3	185.7	127.0	64.0	137.4
9	-12.8	31.9	60.8	26.2	11.4	43.1	70	21.1	121.5	201.5	138.5	71.1	149.3
10	-12.2	32.8	62.3	27.1	12.0	44.3	75	23.9	132.2	218.2	150.6	78.6	161.9
11	-11.7	33.8	63.9	28.0	12.6	45.4	80	26.7	143.7	235.9	163.5	86.7	175.4
12	-11.1	34.8	65.4	29.0	13.2	46.6	85	29.4	155.7	254.6	177.0	95.2	189.6
13	-10.6	35.8	67.0	29.9	13.8	47.8	90	32.2	168.4	274.3	191.3	104.3	204.5
14	-10.0	36.8	68.6	30.9	14.4	49.0	95	35.0	181.9	295.0	206.4	113.9	220.2
15	-9.4	37.8	70.2	31.8	15,1	50.2	100	37.8	196.0	316.9	222.3	124.1	236.8
16	-8.9	38.8	71.9	32.8	15.7	51.5	105	40.6	210.8	339.9	239.0	134.9	254.2
17	-8.3	39.9	73.5	33.8	16.4	52.7	110	43.3	226.4	364.1	256.5	146.3	272.5
18	-7.8	40.9	75.2	34.8	17.1	54.0	115	46.1	242.8	289.6	274.9	158.4	291.9
19	-7.2	42.0	77.0	35.9	17.7	55.3	120	48.9	260.0	416.4	294.2	171.1	312.1
20	-6.7	43.1	78,7	36.9	18.4	56.6	125	51.7	278.1	444.5	314.5	184.5	333.4
21	-6.1	44.2	80.5	38.0	19.2	57.9	130	54.4	297.0	474.0	335.7	198.7	355.6
22	-5.6	45.3	82.3	39.1	19.9	59.3	135	57.2	316.7	505.0	357.8	213.5	379.1
23	-5.0	46.5	84.1	40.2	20.6	60.6	140	60.0	337.4	537.6	380.9	229.2	403.7
24	-4.4	47.6	85.9	41.3	21.4	62.0	145	62.8	359.1	571.7	405.1	245.6	429.6
25	-3.9	48.8	87.8	42.4	22.1	63.4	150	65.6	381.7	607.6	430.3	262.8	456.8
26	-3.3	50.0	89.7	43.6	22.9	64.8	155	68.3	405.4	645.2	456.6	281.0	484.8

Italics indicates vacuum (inches of mercury) Standard font indicates pressure (pounds per inch gauge)

How to read Pressure -Temperature Chart

Before start/during the running system, how to check the pressure corresponding to temperature.

For example - Kindly refer to above mentioned reading in red circle & pointed with arrow. Refrigerant = R22, Temperature = 35° C Pressure (PSI) = 181.9

Consider the ambient 35°C, so your system standing pressure should be 181.9 psi in R22 system.

System start-up and operational check sheet

After the installation has been completed, below check list points should be covered before/during the system is placed in operation. The below check list is also applicable for the long time shut- down system.

- Ensure all the visual inspection of Electrical connection, Shut-off valve, Safety Equipment connection, Wiring & earthing etc.
- All the brazing joint, Flare connection, pipe clamp support, Electrical panel etc are leak proof/tighten.
- Proper amount of refrigerant charge in the system.

Condensing unit info				
Customer name & contact :				
CDU model & serial number :				
Installation date:				
CDU location :				
Indoor unit make/model :				

System details					
Room/Case ID :					
Pipe Length (approx.) :					
OAT @ Start-Up/Check :					
PSI Leak Test :	PSIG				
Duration :	Hours				
System is Leak Tight :	Y/N				
Triple Evacuation :	Y/N				
Micron Gauge Reading:	microns				
Total Evacuation :	PSIG @ # of Hrs				
Refrigerant :					
Total Charge :	Kg.				
Sight Glass Clear :	Y/N				
Evap. Fans Running :	Y/N				
Liquid Line Insulation :	Y/N				
Sound and Vibration :					

System details					
COMP Voltage :	V				
COMP Current :	A				
Standing Pressure	PSIG/Bar				
Suction Pressure :	PSIG/Bar				
Liquid Line Pressure :	PSIG/Bar				
COMP Suction Temp :	°C				
COMP Disch. Temp :	°C				
Liquid Line Temp :	°C				
Compressor SH :	К				
Subcooling :	К				
Adjustable LP Setpoint :	PSIG				
Design/Operating Temp:	°C				
Actual Room/Case Temp :	°C				

About Copeland

Copeland, a global provider of sustainable climate solutions, combines category-leading brands in compression, controls, software and monitoring for heating, cooling and refrigeration. With best- in-class engineering and design and the broadest portfolio of modulated solutions, we're not just setting the standard for compressor leadership; we're pioneering its evolution. Combining our technology with our smart energy management solutions, we can regulate, track and optimize conditions to help protect temperature-sensitive goods over land and sea, while delivering comfort in any space. Through energy-efficient products, regulation-ready solutions and expertise, we're revolutionizing the next generation of climate technology for the better.

