Vapor injection technology enables superior refrigeration performance

Background

The demand for reliable and cost-effective cold storage facilities across India continues to grow. A multi commodity facility was planned for construction in the city of Nashik to meet the need of its expanding economy. This new cold storage facility would store perishables for export.

Solution

Distributed system design (3 independent refrigeration systems per room)

Product movement per day:

Room number	Room 1	Room 2	Room 3	Room 4
Target room temperature	-20 °C			
Products to be stored	Frozen fruits & vegetables			
Product initial temp	-10 °C			
Product target temp	-18 °C			
Pull down time	24 hours			
Product load per day	10	MT	15 MT	
Required refrigeration capacity	30	kW	40 kW	
Installed Copeland condensing unit	KHZ536LV (6 units (L-TFD-103 @ 10kW)	KHZ550LVL-TFD-103 (6 units @ 13.5kW)	

Challenge

Delivery

timelines

Limited installation space, minimize noise

Reliability issues

Minimize operating expenses (Electricity and maintenance costs)

Approach

01	Identify customer needs and pain points
02	Heat load calculation and equipment selection
03	Customer site visit
04	System design and optimization
05	Customer support during and after installation

COPELAND

Results

 Lower noise vibration harmonics

 Compact design feature of scroll compressors

 Built in redundancy of distributed system design minimizes the risk of facility downtimes, improving reliability

•

Smaller electricity feeder enables CAPEX savings - 35% reduction in connected load

 Rapid CAPEX recovery leading to reduction in total cost of ownership Up to 22% energy cost savings vs semi hermetic

compressor systems

•

Faster delivery - High quality India made CDUs delivered

in 4 weeks

Space saving, smaller footprint and weight reduction - Up to 50% lighter, 30% less volume, 30% less floor space needed vs semi hermetic systems

Operating Cost Comparison Semi Hermetic vs Scroll

3.50 3.00 24.1% 21.5% 2.50 Dperating Cost Rupees (Million) 2.00 1.50 1.00 0.50 0.00 Year 2 Year 3 Year 10 Year 1 Year 4 Year 5 Year 6 Year 9 -Scroll S/H

Pay Back Period on Initial CAPEX For Scroll Condensing Units

•

* Simulated Data For 10HP Condensing Unit

Vapor Injection Technology for Refrigeration Scroll Compressors

- Injects into the middle of compression process
- Economizer cycle benefits: -20% increased efficiency -40% increased capacity
- Improved reliability at low temperature applications
- Axial and Radial Compliance significantly reduces starting current
- Wide operating envelope at +20C RGT without additional cooling

* Simulated Data For 10HP Condensing Unit

Emerson.com

Emerson, is a trademark of Emerson Electric Co. or one of its affiliated companies. ©2023 Emerson Climate Technologies, Inc. All rights reserved.

COPELAND