
Optimized Hermetic Condensing Units To Meet DOE & EPA Regulations

Launch Package

Commercial Refrigeration Equipment Equipment Classes

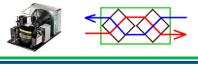
Buffet Tables, Salad Bars, Prep Tables Beyond Scope of Energy Mandates

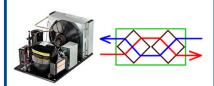
Scope of CRE Test Procedure

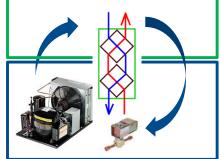
- DOE's CRE test procedure is applicable to all equipment for which DOE has
 established energy conservation standards, as well as to some equipment
 types for which DOE has not yet established energy conservation standards,
 such as chef bases and griddle stands.
- The current DOE test procedure is not applicable to salad bars, prep tables, and refrigerated buffet tables.
- For equipment to which it applies, the DOE test procedure must be used for making representations of energy consumption.

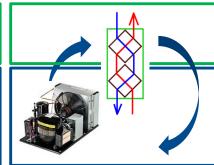
Regulated

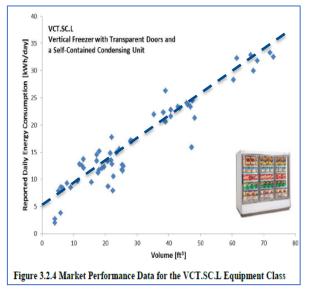
Regulated




Not Regulated


Top Rail


Bottom Storage



CRE Equipment DOE Analysis and Equations

- X-axis: size of equipment ft³
- Y-axis: energy draw kWh/day
- Equation format: Y = m(x) + b
- $kWh = m(ft^3) + b$

- 33 classes of equipment
- Remote condensing and self-contained open cases will not require major efficiency improvement challenges
- Self-contained vertical reach-ins will require significant efficiency improvement changes

	Equations				y-In	Intercept Slope			lope		
	2010	2012	2017	2010	2012	2017	% Delta	2010	2012	2017	% Delta
VOP.RC.M		$0.82 \times TDA + 4.07$	$0.64 \times TDA + 4.07$		4.07	4.07	0%		0.82	0.64	-22%
VOP.RC.L		$2.27 \times TDA + 6.85$	$2.2 \times TDA + 6.85$		6.85	6.85	0%		2.27	2.2	-3%
SVO.RC.M		$0.83 \times TDA + 3.18$	$0.66 \times TDA + 3.18$		3.18	3.18	0%		0.83	0.66	-20%
SVO.RC.L		$2.27 \times TDA + 6.85$	$2.2 \times TDA + 6.85$		6.85	6.85	0%		2.27	2.2	-3%
HZO.RC.M		$0.35 \times TDA + 2.88$	$0.35 \times TDA + 2.88$		2.88	2.88	0%		0.35	0.35	0%
HZO.RC.L		$0.57 \times TDA + 6.88$	$0.55 \times TDA + 6.88$		6.88	6.88	0%		0.57	0.55	-4%
VCT.RC.M		$0.22 \times TDA + 1.95$	$0.15 \times TDA + 1.95$		1.95	1.95	0%		0.22	0.15	-32%
VCT.RC.L		$0.56 \times TDA + 2.61$	$0.49 \times TDA + 2.61$		2.61	2.61	0%		0.56	0.49	-13%
HCT.RC.M		$0.16 \times TDA + 0.13$	$0.16 \times TDA + 0.13$		0.13	0.13	0%		0.16	0.16	0%
HCT.RC.L		$0.34 \times TDA + 0.26$	$0.34 \times TDA + 0.26$		0.26	0.26	0%		0.34	0.34	0%
VCS.RC.M		$0.11 \times V + 0.26$	$0.1 \times V + 0.26$		0.26	0.26	0%		0.11	0.1	-9%
VCS.RC.L		$0.23 \times V + 0.54$	$0.21 \times V + 0.54$		0.54	0.54	0%		0.23	0.21	-9%
HCS.RC.M		$0.11 \times V + 0.26$	$0.1 \times V + 0.26$		0.26	0.26	0%		0.11	0.1	-9%
HCS.RC.L		$0.23 \times V + 0.54$	$0.21 \times V + 0.54$		0.54	0.54	0%		0.23	0.21	-9%
SOC.RC.M		$0.51 \times TDA + 0.11$	$0.44 \times TDA + 0.11$		0.11	0.11	0%		0.51	0.44	-14%
SOC.RC.L		$1.08 \times TDA + 0.22$	$0.93 \times TDA + 0.22$		0.22	0.22	0%		1.08	0.93	-14%
VOP.SC.M		1.74 x TDA + 4.71	1.69 x TDA + 4.71		4.71	4.71	0%		1.74	1.69	-3%
VOP.SC.L		4.37 x TDA + 11.82	$4.25 \times TDA + 11.82$		1.82	1.82	0%		4.37	4.25	-3%
SVO.SC.M		1.73 x TDA + 4.59	$1.7 \times TDA + 4.59$		4.59	4.59	0%		1.73	1.7	-2%
SVO.SC.L		4.34 x TDA + 11.51	4.26 x TDA + 11.51		1.51	1.51	0%		4.34	4.26	-2%
HZO.SC.M		$0.77 \times TDA + 5.55$	$0.72 \times TDA + 5.55$		5.55	5.55	0%		0.77	0.72	-6%
HZO.SC.L		$1.92 \times TDA + 7.08$	$1.9 \times TDA + 7.08$		7.08	7.08	0%		1.92	1.9	-1%
VCT.SC.M	0.12 V + 3.34		$0.1 \times V + 0.86$	3.34		0.86	-74%	0.12		0.1	-17%
VCT.SC.L	0.75 V + 4.10		0.29 x V + 2.95	4.1		2.95	-28%	0.75		0.29	-61%
VCS.SC.M	0.10 V + 2.04		0.05 x V + 1.36	2.04		1.36	-33%	0.10		0.05	-50%
VCS.SC.L	0.40 V + 1.38		0.22 x V + 1.38	1.38		1.38	0%	0.40		0.22	-45%

EPA's Final Rule

Phase out dates / Likely alternatives

Summary of most commonly used refrigerants

DI .	Super-	Super-	Remote Remote			Standalone		
Phase-out Refrigerant	<i>Market</i> New*	market Retrofit**	<i>CDU</i> New	CDU Retrofit**	MT, <2200BTU/hr. and no flooded evap. New	MT, >2200BTU/hr. or contain flooded evap. New	<i>LT</i> New	LT & MT Retrofit* *
R-404A/507A	Jan. 1 2017	July 20 2016	Jan. 1 2018	July 20 2016	2019	2020	2020	July 20 2016
R-410A	ОК	-	OK	-	2019	2020	2020	-
R-407A/C/F	OK	ОК	OK	ОК	2019	2020	2020	ОК
HFC-134a	ОК	ОК	OK	ОК	2019	2020	ок	ОК
Likely Alternatives								
R-448A/449A	OK	OK	OK	ОК	Neither SNAP- approved, nor banned	Neither SNAP- approved, nor banned	ОК	OK for LT only
R-450A/513A	ОК	ОК	OK	ОК	OK	OK	OK	ОК
R-290	-	-	-	-	ОК	ОК	ок	-
R-744	ОК	-	ОК	-	OK	OK	ок	-
R-717	OK (in primary loop of secondary CO2 sys.)	-	OK (in primary loop of secondary CO2 sys.)	-	-	-	-	-

^{*} Includes ICE machines connected to a supermarket rack refrigeration system.

^{**} EPA uses term "retrofit" to indicate the use of a refrigerant in an appliance that was designed for and originally operated using a different refrigerant. Term does not apply to upgrades to existing equipment where the refrigerant is not changed.

EPA Refrig.

Compliance Will Not Be Easy

	2017	2018	2019	2020	2021
Supermarket (Rack)	<2,500 GWP 1/1/17				
Walk-In (Remote CDU)		<2,500 GWP		Awaiting Final ASRAC	
Cooler		1/1/18		20-40%	
Freezer				20–30% 1/1/20	
Reach-In (Stand-Alone)	30–50%				
Cooler <2,200 BTU	3/27/17		<600 GWP		
>2,200 BTU	ı		1/1/19	<600 GWP	
Freezer				<1,500 GWP	
Ice Machine		5–15% 1/1/18		1/1/20	ON FOL
Dispensing		R-290 Approved			<1,500 GWP

Energy Efficiency & ENERGY Renewable Energy APPLIANCE & EQUIPMENT STANDARDS PROGRAM | CCMS Regulations & Compliance » Compliance Certification Management System (CCMS) Compliance Certification Management System Home Compliance Certification Management System (CCMS) Login to CCMS **Product Templates** Registration and Authorization Forms Help Instructions and Manufacturer Codes for Submitting Supplemental Testing Instructions Compliance Certification Database FTC Appliance Energy Data Archives Test Procedure Guidance for Appliances and Commercial Equipment Appliances and Commerical Equipment Standards Certification and Enforcement Contacts News

Current Number of Models Listed

- Google "DOE CCMS" or ...
 - https://www.regulations.doe.gov/ccms
- DOE enforcement mechanism
 - Fines have been imposed
- Annual certification required by submitting new CCMS and supplemental testing forms each year

Emerson Climate
Technologies Product
Line Efficiency Approach
& Methodology

Reasons For This Condensing Unit Product Line Efficiency Improvement

Department Of Energy Regulations

- Commercial Refrigeration Equipment require 30%-50% energy improvements
- March 2017 impact date
- Condensing units account for ~75% energy consumption with ~65% duty cycle of a system

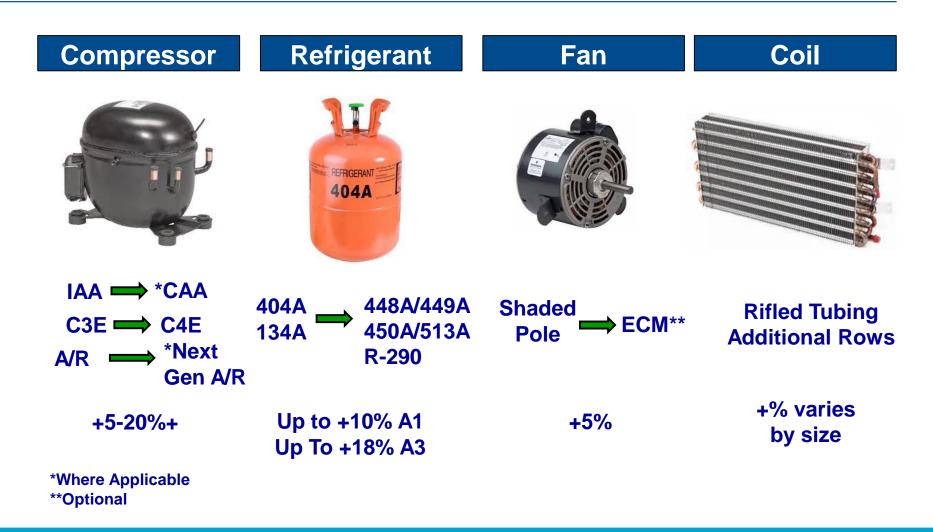
Environmental Protection Agency Regulations

- Standalone refrigeration equipment will no longer be able to use 134a/404A beginning in 2019 & 2020 respectively by temperature class
- 448A/449A for LT & 450A/513A for LT/MT are acceptable nonflammable alternatives for use

Product Line Improvement Approach

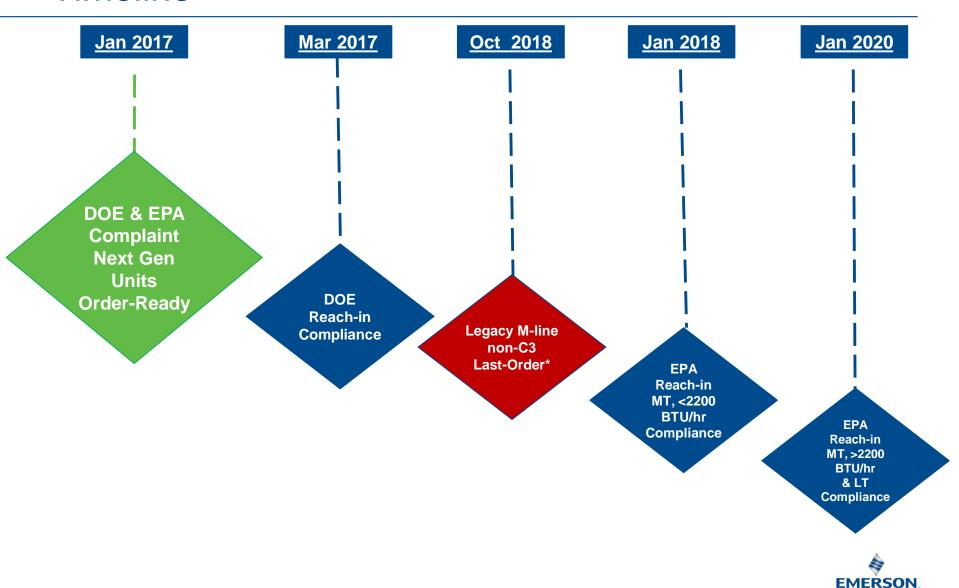
1. Efficiency

Able to holistically analyze full product offering line and determine best potential for efficiency gains.


2. Cost Effectiveness

Improvement levers analyzed for delivering best possible efficiency gains against other costly levers.

3. Refrigerant Readiness

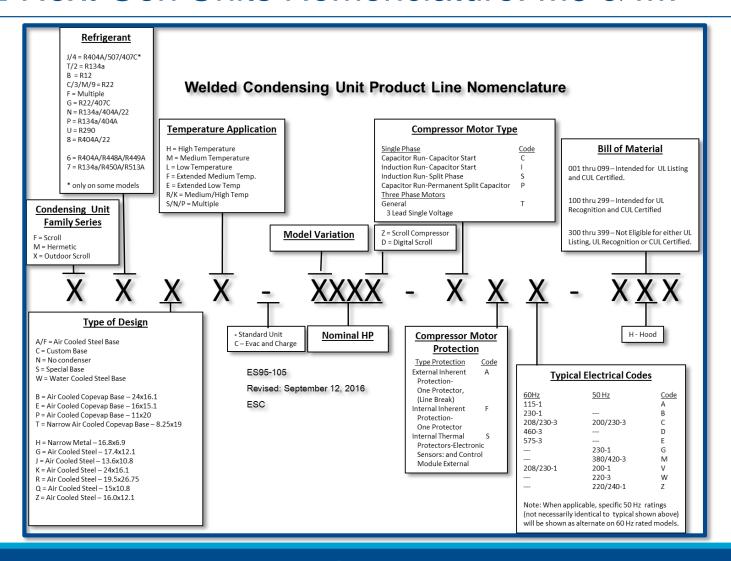

Condensing units will be offered with additional alternative refrigerant ratings at the same time.

Product Line Improvement Levers

Larger chassis sizes are available if additional efficiency gains are needed.

DOE Units Optimization – Hermetic Timeline

Next Gen Unit Nomenclature & Design Layouts

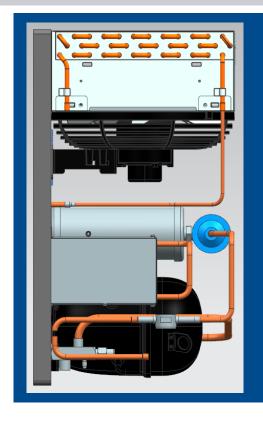

DOE Next Gen Units: M6 & M7 Standard Options

		Suggested OEM BOM's						olesaler BOM's																		
Options	020	028*	212	072	078*	272	177 (like 103 w. FD/SG)	179 (like 111 w. FD)																		
UL	Listed	Listed	Recognized	Listed	Listed	Recognized	Recognized	Recognized																		
Filter Dryer				yes		yes	yes	yes																		
Sight Glass				yes	yes yes		yes																			
Fan Guard	yes	yes		yes	yes		yes yes																			
Suction Valve	yes	yes		yes	yes		yes	yes																		
Receiver	yes	yes		yes		yes	yes																			
High Pressure/EUC	yes			yes																						
Conduit	yes		yes	yes	yes yes		yes		yes		yes		yes		yes		yes		yes		yes		yes			
End Cover	yes		yes	yes		yes																				
Power Cord							yes	yes																		

Units with a compressor RLA under 6A do not require pressure controls for UL listing. xx8 will identify units under 6A that are listed, but they do not have pressure controls.

³xx is no UL, 50 HZ BOM.

DOE Next Gen Units Nomenclature: M6 & M7

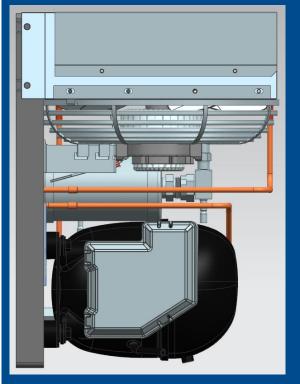


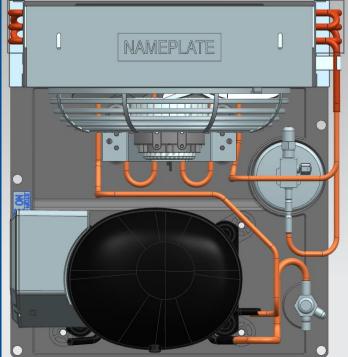
DOE Next Gen Units Nomenclature: M6 & M7

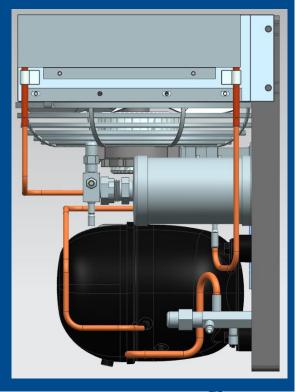
Family	Refrigerant	Type of Design (Chassis: L x W)	Temperature Application	-	Model Variation
F = Scroll units	F = Multiple	A/F = Air Cooled Steel Base	L = Low	C = Evac & Charge	0 = Base Efficient model
M = Hermetic units	U = R290	C = Custom Base	M = Medium		A = Base Eff. Revision 1
X= Outdoor Scroll	6 = 404A/448A/449A	N = No condenser	H = High		B = Base Eff. Revision 2
	7 = 134A/450A/513A	S = Special Base	P = Multiple		D = Base Eff. Revision 3
		W = Water Cooled Steel Base			E = Base Eff. with EC Motor
		B = Air Cooled Copevap Base - 24x16.1			H = High Efficient model
		E = Air Cooled Copevap Base - 16x15.1			P = High Eff. Revision 1
		P = Air Cooled Copevap Base - 19.9x11.0			Q = High Eff. Revision 2
		T = Narrow Air Cooled Copevap Base - 19.0x8.3			S = High Eff. Revision 3
		H = Narrow Metal Steel - 16.8x6.9			U = High Eff. w. EC motor
		G = Air Cooled Steel - 17.4x12.1			
		J = Air Cooled Steel - 13.6x10.8			
		K = Air Cooled Steel - 24x16.1			
		R = Air Cooled Steel - 19.5x26.75			
		Q = Air Cooled Steel - 15x10.8			
		Z = Air Cooled Steel - 16.0x12.1			

Design B - Cope-Vap Base New Layout

Footprint L x W x H	Customer Connections
24.0 x 16.4 x 13.64	5/8" or ½" ID Suction
Cope-Vap	3/8" ID Liquid

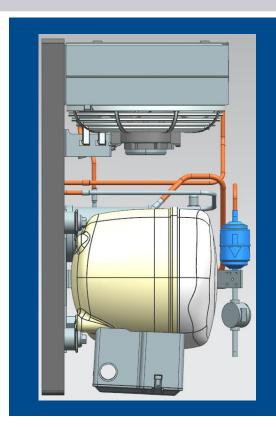


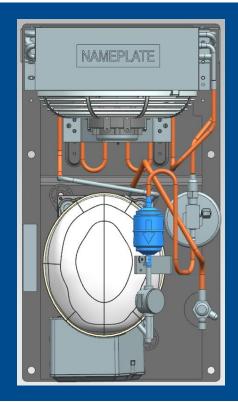


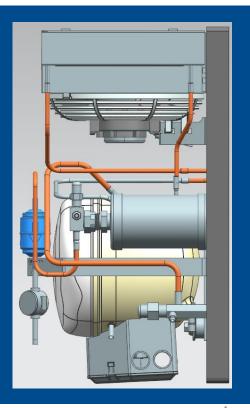


Design E - Cope-Vap Base New Layout

Next Gen Model	Condenser	Footprint L x W x H	Customer Connections
Base Efficiency Model e.g. M6EL- <u>0</u> 030-IAA-028	3 Row Conventional Condenser	16.0 x 14.25 x 10.5	3/8" ID Suction
High Efficiency Model e.g. M6EL- <u>H</u> 062-CAA-212	5 Row Rifled Condenser	Cope-Vap	¼" ID Liquid

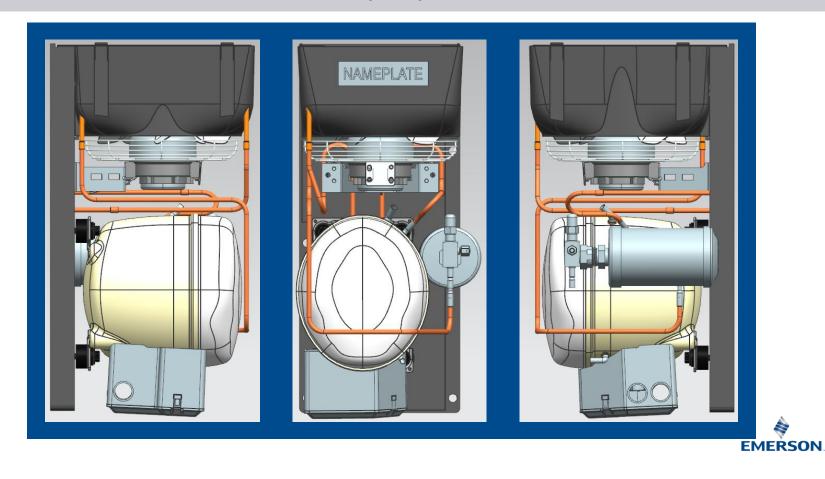





Design P - Cope-Vap Base New Layout

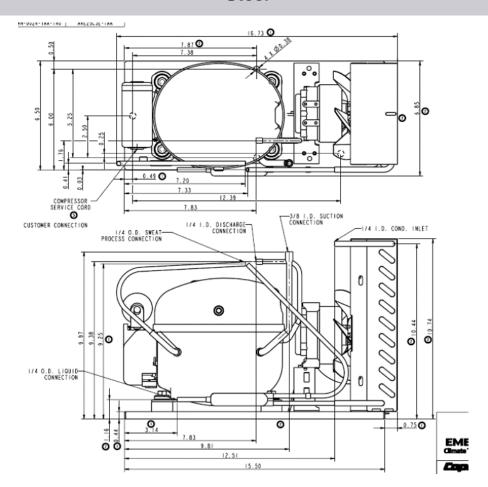
Footprint L x W x H

19.9 x 11.2 x 11.2 Cope-Vap



Design T - Cope-Vap Base New Layout

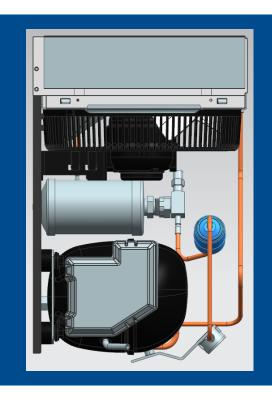
Footprint L x W x H


19.3 x 9.4 x 10.5 Cope-Vap

Design H - Steel Base New Layout

Footprint L x W x H

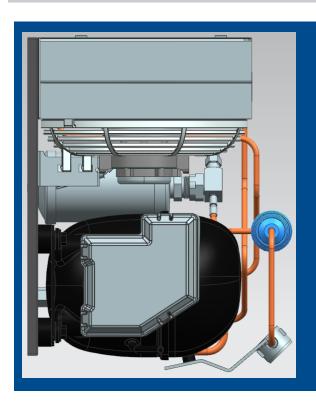
16.8 x 6.9 x 10.8 Steel

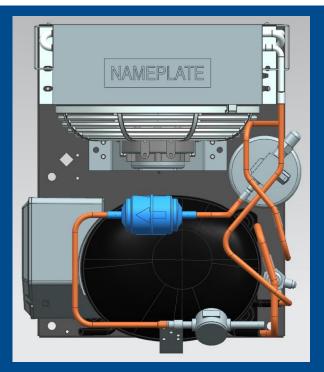


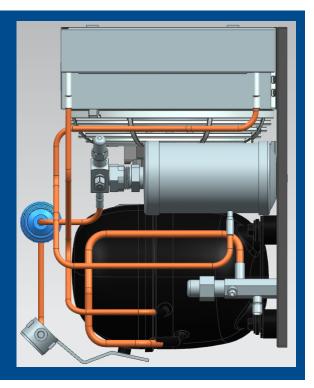
Design G - Steel Base New Layout

Footprint L x W x H

17.4 x 12.1 x 11.8 Steel






Design J - Steel Base New Layout

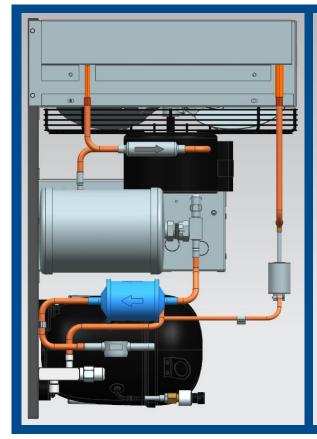
Footprint L x W x H

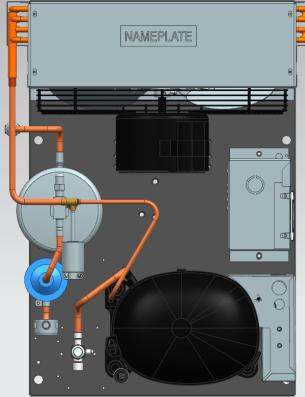
14.1 x 12.2 x 11.8 Steel

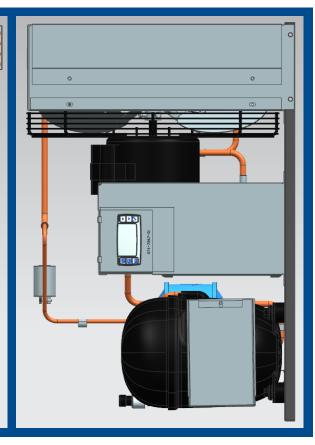


Design K - Steel Base New Layout

Footprint L x W x H	Customer Connections
24.0 x 16.4 x 13.1	5/8" or ½" ID Suction
Steel	3/8" ID Liquid

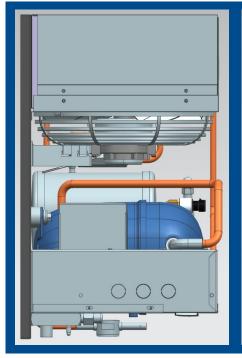


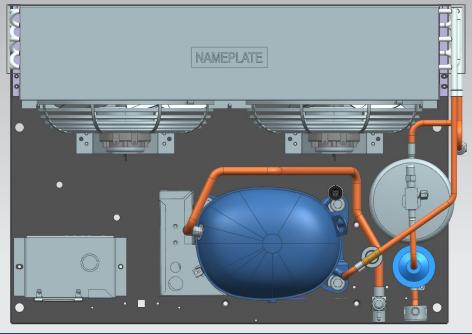




Design K - Steel Base New Layout

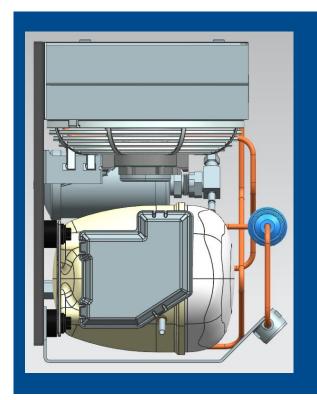
Footprint L x W x H	Customer Connections
24.0 x 18.3 x 16.2 Steel	5/8" or ½" ID Suction 3/8" ID Liquid

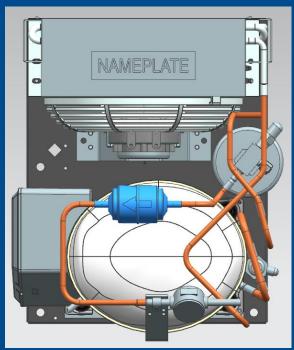


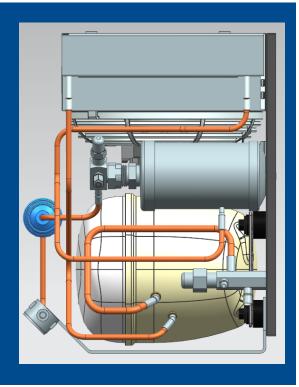


Design R - Steel Base New Layout

Footprint L x W x H	Customer Connections
19.5 x 27.9 x 11.9	5/8" or ½" ID Suction
Steel	3/8" ID Liquid

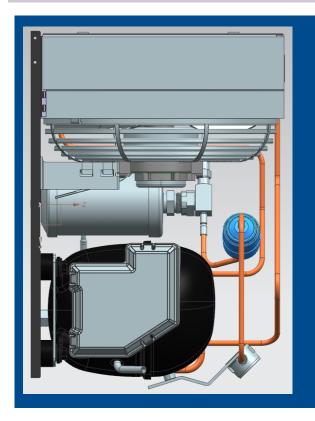





Design Q - Steel Base New Layout

Footprint L x W x H

15.7 x 12.2 x 11.7 Steel



Design Z - Steel Base New Layout

Footprint L x W x H

16.3 x 12.1 x 11.8 Steel

